

Robot Navigation and Textural Analysis

Rand C. Chandler A. Antonio Arroyo M. Nechyba E. M. Schwartz

rand@mil.ufl.edu arroyo@mil.ufl.edu nechyba@mil.ufl.edu ems@mil.ufl.edu

Machine Intelligence Laboratory
Department of Electrical and Computer Engineering
University of Florida, Gainesville, FL 32611-6200

Abstract

We present a method for navigating an autonomous agent
based on the textures present in an environment. Specifically, the
autonomous agent in question is that of a robotic lawn mower. If
we can successfully differentiate the textures of the cut and uncut
lawn surfaces, then we can track the boundary between them and
mow in a pattern as a human would. The system uses the wavelet
transform as the basis to perform texture analysis. The wavelet
transform extracts meaningful features from the input images by
breaking the image into different frequency subbands. Different
subbands will isolate different features in the input image. In this
way, we can generate a frequency signature of the image. After
performing the wavelet transform, we perform a post-processing
stage on these resulting features in an attempt to make them more
acceptable to our classifier. These processed features are then
grouped into vectors and then classified. The result is a clustered
image based on texture. Once we have the image segmented
based on the textures present in the image, we then determine the
boundary between them by use of a boundary detection algorithm.
In this way we can give a robotic lawn mower the ability to track
this boundary and mow as a human would mow. While we avoid
the actual implementation of this algorithm on a real platform due
to the hazardous nature of lawn mowing in general, we do show
how this algorithm can be easily adapted to the task of sidewalk
tracking. In this alternate task, the robot tracks the boundary on
both sides of the sidewalk, giving the robot the ability to follow the
sidewalk. In doing so we not only show the adaptability of our al-
gorithm to another task but also show its implemention on a mo-
bile robot platform.

1. Introduction

Navigating a robot through its environment can be a daunting
task depending on the degree of functionality we desire. For in-
stance, we may want to design a robot that simply avoids (while
moving randomly) bumping into obstacles in a closed (confined)
indoor environment. On the other hand, we may desire a robot that
operates outdoors and needs the ability to know exactly where it
is in its environment. Both of these situations require that the au-
tonomous agent have the ability to sense its environment for suc-
cessful navigation tasks. This is typically accomplished through
the judicious processing of sensory driven data.

The types of sensors used on an autonomous agent depends on
the application. For our indoor robot case, simple infrared emitter
and detector sensors may be all that is necessary to avoid bumping

into obstacles. However, for a robot that needs to accurately as-
certain its location outdoors, some type of positioning system is
required. This may require the use of a Global Positioning System
(GPS) or a Local Positioning System (LPS). A GPS based system
consists of a GPS receiver that provides an approximate location
based on timing information received from a constellation of or-
biting satellites. A LPS can be realized through the use of beacons
placed throughout the operating environment and the use of trian-
gulation to determine position.

The reliance on an external positioning system could be less-
ened (or possibly eliminated) if the robot was given the ability to
perceive its environment through the use of computer vision. If a
robot could recognize objects in its environment, theoretically it
should be able to navigate through it. Such a system could be used
for a variety of applications. For example, an autonomous lawn
mower could determine the difference between cut and uncut
grass in a typical lawn and use this information to track the bound-
ary between these two regions.

In order to show that a robot can navigate through its environ-
ment using computer vision, we develop a system which allows a
robotic lawn mower to mow in a pattern similar to a human per-
forming the same task. A human operator will typically mow a
lawn using a plow-like (going back and forth) pattern or by start-
ing at the outside perimeter of the mowing area and then mowing
inward toward the center of the mowing area. Even though robot-
ic lawn mowers do exist, they mainly rely on the principle of ran-
domness to mow an area defined by a radio pet fence or other
boundary defining system. The autonomous agent has no way of
perceiving if it is mowing over a previously cut area or if it is
mowing in an area that has not been cut. While this process does
work, it is very inefficient in terms of time and energy consump-
tion.

The system that we developed has the ability to recognize tex-
tures in an input image of a lawn allowing the mower to recognize
the difference between the cut and uncut lawn surface. This gives
the agent the potential to track the boundary between these two re-
gions resulting in a net time savings and lower energy consump-
tion. Because of the hazardous nature of lawn mowing, our
algorithm was applied to a sequence of captured image files.

While the main emphasis of this paper focuses on the develop-
ment of an agent capable of autonomous lawn mowing, we also
show how the vision capable system can be adapted to other tasks.
One such task is that of navigating a sidewalk. We then discuss
how this can be extended to a real-time vision equipped agent.

This system is also implemented on a non-mower mobile robot
platform for the task of sidewalk tracking.

2. Metic of texture

Texture is an important quality to consider when examining
the contents of an image. Practically every object (natural or man
made) contains some texture on the macroscopic level. Thus, the
use of texture information would be a practical means of segment-
ing objects in an image.

Figure 1(a) shows some examples of different textures. They
are all from the Brodatz texture database. Figure 1(b) shows a
sample result of texture segmentation. This is what an “ideal” seg-
mentation would look like. Discussed in the sub-section below are
the methods commonly used in the analysis of textures.

2.1 Methods used for texture analysis

Several methods have been used in the analysis of texture.
These methods can be broken down into two main categories: (1)
statistical based methods and (2) spatial/frequency based meth-
ods. Statistical based approaches include the use of Markov Ran-
dom Fields [9, 12, 13, 16], co-occurrence matrices [14, 17],
region competition [20], circular-mellin features [15], and second
order grey level statistics [14]. Unser [17] reports that most statis-
tical based methods are best suited for the analysis of micro tex-
tures. This is due to the fact that they are restricted to “the analysis
of spatial interactions over relatively small neighborhoods.” Spa-
tial/frequency based approaches include the use of Gabor filters
[2, 5, 10] and Wavelet transforms [6, 7, 8].

2.1.1 Spatial/frequency based approaches

These approaches include Gabor filters [2, 10] and wavelet
transforms [6, 18]. Gabor functions consist of sinusoids of a par-
ticular frequency that are modulated by a Gaussian envelope.
They (like their wavelet counterparts) provide localized space-
frequency information of a signal [3]. Two dimensional Gabor
functions consist of a sinusoidal plane of some orientation and
frequency modulated by a Gaussian envelope. However, Gabor
filters are computationally very inefficient [6]. Also, the outputs
of Gabor filter banks are not mutually orthogonal which could re-
sult in correlation between texture features [17].

Wavelet transforms can be thought of as a multi-resolution de-
composition (multiple scale signal view) of a signal into a set of
independent spatially oriented frequency channels [1, 19]. In its
simplest form, the wavelet can be thought of as a bandpass filter.
To begin a wavelet analysis, one starts with a prototype (or moth-
er) wavelet. High frequency (contracted) versions of the proto-
type wavelet are used for fine temporal analysis while low
frequency (dilated) versions are used for frequency analysis [4].
Unlike the Gabor functions described earlier, fast algorithms exist
for wavelet decompositions. If one chooses wavelets that are or-
thonormal, then correlation between different wavelet scales is
avoided. Furthermore, there is experimental evidence that sug-
gests that the human vision system supports the notion of a spa-
tial/frequency multi-scale analysis, making wavelet transforms an
ideal choice for texture analysis [8, 17]. For this project, texture
will be represented using a spatial/frequency approach by use of
the wavelet transform.

3. Texture analysis

The texture analysis algorithm can be logically broken into
two distinct stages. In the first stage, a statistical model is created
for the data contained within our training set. This stage is re-
ferred to as the training phase. For the second stage of this algo-
rithm, the statistical model generated during the training phase is
used to compare the contents of an unknown image against in or-
der to classify which textures are present in the image. This stage-
is referred to as the classification stage.

3.1 Training phase

Figure 2 shows a graphical representation of the training phase
of our texture analysis system. As can be seen, the inputs to our
system are composed of the various training data for the objects
in which we are interested in identifying later in the classification
stage. For this algorithm, we operate only on greyscale images.
Thus, all color information is ignored. Features are extracted from
these greyscale images, one image at a time, by means of the
wavelet transform.

Fig. 1: (a) Some sample Brodatz textures. From upper left going clockwise, D17: Herringbone weave, D24: Pressed calf leather,
D68: Wood grain, D29: Beach sand. (b) An example of texture segmentation.

(a) (b)

3.1.1 Wavelet transform

Because we are dealing with images which are two-dimen-
sional, we will carry out our analysis by means of a two-dimen-
sional wavelet transform. Specifically, we will use the LeMarie-
Battle wavelet/filter with an arbitrary wavelet decomposition of a
discrete wavelet packet tree. Thus, not all sub-bands of a particu-
lar level will be used for the purposes of generating the VQ code-
book which will later be used for classification.

3.1.2 Feature enhancement

After features have been extracted from a particular training
image by means of the wavelet transform stage, the envelope de-
tection stage is used to make the output of the wavelet transform
stage more acceptable to the clustering and classification stages.
We should note several important points when applying the enve-
lope detector to a wavelet sub-band. In our case, the four distinct
wavelet sub-bands generated as a result of the two-dimensional
wavelet transform have different characteristics. For example, the
LL sub-band is a down sampled version of the original image (or
in a multiple level wavelet transform, a down sampled version of
the previous node in the tree). Thus, application of the envelope
detector to this band would not yield any significant results. How-
ever, the LH, HL, and HH bands do tend to isolate horizontal, ver-
tical, and diagonal features respectively. It would therefore make
sense to apply the envelope detector either column-wise or row-
wise depending on the particular isolation properties of that par-
ticular wavelet sub-band. Given this is the case, we will apply the
envelope detection algorithm according to Table 1.

3.1.3 Feature vectors

While the generation of feature vectors is not a process or
stage in the overall process, it is important to discuss how the
“feature” vectors are formed. The feature vectors are formed in

the following manner: A vector is constructed for each pixel in the
input image consisting of the values of the various wavelet sub-
bands after the envelope detection process has taken place. It is
important to point out that not all of the wavelet sub-bands for a
given level will be used in construction of the feature vectors.
This will be explained further in the next section. Also it is impor-
tant to point out that the envelope detection stage is only applied
to the last level in the wavelet tree. We assume that the envelope
detection stage has been applied to the last stage in the wavelet
tree before the vectors are formed from the wavelet subbands in
that particular level.

3.1.4 Vector quantization stage

After the feature vectors have been generated for all of the
training data, the LBG, vector quantization algorithm is applied to
these vectors. What results is the VQ codebook. What we have not
mentioned so far is what to choose for the size of the VQ code-
book. We will defer this discussion until the next section.

3.1.5 Histogram generation

The histograms are generated for each class of training data.
These are generated by counting the number of feature vectors
that belong to each code in the VQ codebook for each object in
the training set. The histograms are then normalized to fit proba-
bilistic constranints. As mentioned earlier, because we are train-
ing the system with known data we have provided, we know from
which object each feature vector came from. It is this knowledge
we use to construct the histograms.

3.2 Clustering and classification phase

Now that we have the VQ codebook and histograms generated
for our training data, we can now turn our attention to clustering
and classifying unknown data. The unknown data is greyscale im-
age data just as was the case for the training data. However, we
will limit our unknown image size to 320 pixels horizontally by
240 pixels vertically. An image size of 320 by 240 pixels is large
enough to maintain the textural features of the objects present in
the image and is smaller than the traditional image size of 640 by
480 pixels. The reduced image size significantly reduces the com-
putational time of the texture analysis algorithm. Figure 3 below
shows a graphical representation of the clustering and classifica-
tion stage.

It is important to point out that the wavelet transform, enve-
lope detection, and feature vector generation stages are identical

Table 1: Orientation application of the envelope detector

Isolated Features Apply envelope det.

Horizontal

column-wise

Vertical

row-wise

Diagonal

column-wise

Wavelet
Transform

Envelope
Detection

LBG Vector
Quantization

Feature Vectors

VQ Codebook
Training
Images

Histogram
Generation

Fig. 2: Training phase of the texture analysis system.

Unknown
Image

Histogram
Classification

Result

Wavelet
Transform

Envelope
Detection

Feature Vectors

Fig. 3: Classification phase of the texture analysis system.

to that of the training phase. The same meaningful features that
were extracted from the training data must be extracted from the
unknown data in the same manner in order for our analysis to
work properly. Once we have generated the feature vectors for our
unknown data, we can then use the VQ codebook and find out
which cluster (or code) the unknown vectors are closest to and
then use the histogram data to make a determination to which
class the unknown pixels belong. This stage is labeled “Histogram
Classification” in Figure 3.

4. Lawn texture classification system

In this section, we show how the texture analysis system pre-
sented in the previous section is used to perform the task of differ-
entiating between the cut and uncut surfaces of a lawn. Thus, if the
mower knows where the boundary is between the cut and uncut
lawn surfaces, it can track this boundary as it mows. In this man-
ner, a system is produced that is capable of mowing similarly to
how a human would mow a lawn. This is the main emphasis of
this research. For the robot mowing task, lawn images are collect-
ed and processed offline (not in real time) to avoid the hazards as-
sociated with actual lawn mowers. In the next section we will
show how this same system can easily be tailored to the task of
tracking a sidewalk. Because of the non-hazardous nature of this
task, this task is implemented on an autonomous robot.

4.1 Criteria for wavelet subband determination

In order to determine which wavelet sub-bands are relevant for
the task of lawn texture classification, we need to have some type
of criteria to judge each wavelet subband individually. Those that
meet our criteria will be kept for use in the formation of the fea-
ture vectors. Listed below are the criteria we chose to determine
if a particular wavelet subband is suitable for our purposes.

1. In order to keep the processing time down to a minimum, we
would like to keep the number of wavelet subbands down to a
minimum and still produce acceptable results. This also relates
to which level of wavelet tree we generate since the number of
nodes in the wavelet tree increases exponentially as one
descends from one level to the next. Thus, we will limit our
analysis to a level 2 wavelet tree producing 16 wavelet sub-
bands.

2. Because of the strong vertical features exhibited by the lawn
surface, we will disregard any HL sub-band (and any of its
descendants) for analysis except if its parent was from a LH
band. This HL band tends to isolate vertical features that are
present in the uncut and (to some degree) the cut lawn sur-
faces, thus, this band is not useful to add to the content of the
feature vectors. An LH band is beneficial due to the fact that
this band isolates horizontal features which are not contained
in the uncut lawn texture but are contained in the cut lawn tex-
ture. Thus this band (and any of its descendents) will be partic-
ular useful for our classification purposes.

3. From a mathematical perspective, we can compute the amount
of energy contained within each wavelet subband. We will use
Equation 1, known as the L1-norm or variance, to accomplish
this [1]. In Equation 1,

M

 and

N

 represent the dimensions of
the image. This equation sums up the absolute values of all the

coefficients present in the particular wavelet subband. After
that, the sum is then divided by the number of pixels in the
image.

(1)

4. For a final determination, we can visualize a particular wavelet
sub-band by performing a list density plot. A mathematical
package such as Mathematica or other similar tool can be used
for this purpose.

4.2 VQ Parameter determination

Due to the self initializing nature of the LBG, VQ algorithm,
only one parameter needs to be determined. This parameter is the
number of codes in the VQ codebook. Too few codes or too many
codes can lead to unsuccessful classifications. Also, because of
the high dimensionality of our feature vectors, the larger the code-
book, the longer it will take to generate the total codebook. Given
these considerations, and experimental results, we will use a
codebook size of 8 codes. Larger codebook sizes did not yield a
significant improvement in the classification of the lawn textures.

4.3 Results

In this section results are shown for the lawn texture classifi-
cation system. We begin our discussion by showing a sample
lawn image and then we choose the appropriate wavelet sub-
bands based on the criteria outlined earlier. Next, we describe
how we obtain the training data for the system. After this, we
present the clustered and classified results for several lawn imag-
es. We also discuss three algorithms for determining the boundary
between the cut and uncut lawn surfaces.

4.4 Collection of lawn image data

To collect data for our analysis, a wheeled cart was construct-
ed that allowed a standard camcorder to be mounted to it. A man-
ual, gasoline powered, push mower was used to mow a strip of
lawn in a typical lawn environment. Next the cart was pushed
along the right edge of the path created by the push mower, thus
capturing images consisting of the cut lawn surface on the left and
uncut lawn surface on the right. After capturing the video, it was
then input into a computer where it was isolated into individual
image frames, downscaled to 320x240 pixels, cropped, and con-
verted to greyscale. We crop the images vertically to get rid of the
upper portion of the image. This has to do with the fact that the
camera sits less than a foot off the ground and is slightly angled
to the ground. Thus, the top of the image appears (and is) further
away and does not lend itself to good classifications because the
strong vertical features of the cut side are not as prevalent as they
are in the lower portion of the image. Figure 4 shows a lawn im-
age captured from our system. As one can see, due to the low
height of the camera, the vertical features of the uncut portion the
image are highly emphasized lending itself to a better classifica-
tion.

e
1

MN
--------- x m n,()

n 1=

N

∑
m 1=

M

∑=

4.5 Determination of wavelet subbands for lawn
texture analysis

Figure 5 shows the list density plots for each of the 16 wavelet
subbands that are generated in the level 2 DWPF wavelet tree de-
composition. In Figure 5, below each subband is text describing
what type of subband it is (LL, LH, HL, HH) and from what type
of subband it is descended from. The number at the end is the val-
ue of the L1, norm energy measure as described in Equation 1. It
is important to note that this energy measurement is computed be-
fore the application of the envelope detection stage.

Now that we have some information from which to make an
assessment, let us use the criterion we listed previously to justify
our selection of the wavelet subbands used for the lawn texture
classification system. First, let us state the subbands that we do in-
tend to use for analysis purposes and then explain why we elimi-
nated the others. We will use subbands 6, 8, 10, 11, and 12.

Now we will describe how we eliminated the other subbands.
First of all, we will eliminate subbands 13 through 16 because
they are descendants of the top level HL[3] band. Secondly, we
will eliminate bands 17 through 19 based on their low energy con-
tent. Although band 20 may be useful for classification purposes,
we eliminate this band to keep the number of subbands to a
minimum. Next, we eliminate band 5 because this is a lowpassed
version of the original image. Band 7 gets eliminated because it is
a HL band which is descended from the LL[1] band which is a
lowpass version of the original greyscale image. Finally, we elim-
inate band 9 since it is a LL band.

4.6 Selection of the training data

Now that we have determined which wavelet subbands will be
used for the purposes of lawn texture analysis, we need to obtain
training data in order to generate the VQ codebook. This code-
book, as stated in the previous section, is generated during the
training phase. To obtain training data, we cropped small samples,
2 for the cut lawn surface and 2 for the uncut lawn surface from
one frame of image data. This was the only training data used for
the entire series of lawn images that were classified. Figure 6
shows the training data used to generate the VQ codebook.

4.7 Clustered and classified results

Below we present several images showing the results of our
texture analysis system for determining the boundary between the

Fig. 4: Captured lawn image. The cut lawn surface is on the
left. The uncut lawn surface is on the right.

Fig. 5: Wavelet sub-bands contained in level 2 of the DWPF
for the image shown in Figure 4. The text, XX[A]:YY[B] C,
below each subband can be interpreted as follows: XX
represents the parent node from which this sub-band is
generated, YY represents what type of subband this is, A
and B represent the index number for each subband, and C
represents the L1, norm energy measurement for each
subband.

LL[1]:HL[7] 8.52 LL[1]:HH[8] 5.56LL[1]:LH[6] 7.77LL[1]:LL[5] 137.69

LH[2]:HL[11] 2.07 LH[2]:HH[12] 3.52LH[2]:LH[10] 4.69

HL[3]:HH[16] 3.64HL[3]:HL[15] 5.26HL[3]:LH[14] 2.03

HH[4]:HH[20] 2.37HH[4]:HL[19] 1.48HH[4]:LH[18] 1.37HH[4]:LL[17] 0.91

LH[2]:LL[9] 2.68

HL[3]:LL[13] 2.91

Fig. 6: Training data used to generate the VQ codebook for
our results. Figures (a) and (b) represent the cut training data
and figures (c) and (d) represent the uncut training data

(a) (b)

(c) (d)

cut and uncut lawn surfaces. We will also discuss three separate
methods used to calculate the linear boundary between the cut and
uncut lawn regions in each image. Figure 7 shows some results of
our system.

4.8 Line boundary determination

Three methods were employed to determine the linear bound-
ary between the cut and uncut classified regions. If the mower is
supposed to mow as a human would mow, it needs to be able to

determine the boundary between the cut and uncut regions. What
follows is a description of the three methods used.

4.8.1 Best fit step method

This first method is performed on a line by line basis by at-
tempting to fit the data of the two classes to the best fit (lowest
least-squared error) step function [11]. This is depicted graphical-
ly in Figure 8 below. The parameter , is referred to as the
discriminant and in our case is simply the value given to each
class. For instance, for the pixels classified as the cut
lawn texture and for pixels classified as the uncut
lawn texture.

To compute the best fit step function we exhaustively compute
the least squared error function (shown in Equation 2) for each
in line . This involves computing the means

ml

 and

mr

 which
represent the mean of the data on the left side of and the mean
of the data on the right hand side of respectively. The value of

 which yields the lowest error is assigned to be the best fit for
that particular line.

(2)

Once we find the best fit step for every line in the image, we
use linear regression to plot a line through the best fit step points.
To take care of any points that may be outliers, after performing
linear regression, we go back and calculate the distance from each
best fit step point and the line itself. A point that fits within our
prescribed tolerance is kept, all other points are discarded. After
this, we perform linear regression again using only these accept-
able points thus producing a line that better fits the given data
points. In Figure 7, this line is represented by the yellow line.

4.8.2 Maximizing the Minimum Method

In this method, we begin by partitioning the classified result
into two parts by separating them linearly by a candidate line. We
refer to the line as a candidate line since we will try several lines
and see which one gives us the least error according to this meth-
od. The line that yields the least error will be the boundary be-
tween the cut and uncut lawn textures. The algorithm is outlined
below:

Fig. 7: Some results of the lawn texture analysis system.

d i j,()

d i j,() 1=
d i j,() 0=

Fig. 8: Graphical representation of performing the best fit
step function method.

jd
i

jd
jd

jd

error

d i j,() ml–[]
2

j 0=

jd

∑ d i j,() mr–[]
2

jd 1+

jmax

∑+

jmax 1+
---=

1. Set .
2. Linearly partition the classified result into two by the candi-

date line.
3. Let

p1

 be the percentage of pixels from class 1 on the left hand
side of the candidate line and let

p2

 be the percentage of pixels
from class 2 on the right hand side of the candidate line.

4. If then , else .
5. If then let .
6. Go to Step 2 until the classified result has been partitioned by

all possible candidate lines.

The candidate line where the condition in Step 5 of the algo-
rithm was last met is the one chosen to be the boundary between
the cut and uncut lawn surface. This line is represented in Figure
7 by an orange line.

4.8.3 Maximization of area method

This method is similar to the “maximizing the minimum”
method in that we partition the classified result into two parts by
the selection of an appropriate candidate line. In this method, we
try to linearly partition the boundary between the two classes in
such a manner that maximizes the area of the two classes on either
side of the line. For instance, the best possible line would be one
where all the pixels from one class were on one side of the line
and pixels from the other class were on the other side of the line.
Obviously we may never have an ideal case, but we are interested
in finding the line which maximizes this criterion. We formally
state the algorithm below:

1. Set , .
2. Linearly partition the classified result into two by the candi-

date line.
3. Let

p1

 be the percentage of pixels from class 1 on the left hand
side of the candidate line and let

p2

 be the percentage of pixels
from class 2 on the right hand side of the candidate line.

4. Let . If then
and .

5. If then .
6. Go to Step 2 until the classified result has been partitioned by

all possible candidate lines.

The candidate line where the condition in Step 5 of the algo-
rithm was last met is the one chosen to be the boundary between
the cut and uncut lawn surface. This line is represented in Figure
7 by an aqua line.

4.9 Line boundary methods conclusions

The results of all three methods used for determining the
boundary between the cut and uncut lawn surface can be seen in
Figure 7. As can be seen, for the most part, all three methods tend
to produce results which are similar to one another. However,
sometimes the maximizing the minimum and maximization of
area methods do not yield an appropriate result. This is a result of
the general nature of these methods. Both of these methods rely
on the fact that pixels from one class should be present on one side
of the line and that pixels from the other class be present on the
other side of the line. When there are patches of mis-classifica-

tion, this can have a detrimental effect on these two algorithms.
The best fit method can overcome this due to the fact that the line
is determined by a series of points. Even if some points are not
correct, the boundary can still be determined with reasonable suc-
cess.

To gain further insight into the effectiveness of these line
boundary methods, we calculate an error measurement for each of
the described methods. This is accomplished by comparing the
line generated by each method to a line that has been generated
through visual inspection by a human. Thus, this serves as a basis
to judge the efficacy of our described methods.

To determine the error between a line generated by one of our
methods and the line generated by visual inspection, we calculate
the number of pixels between the two lines and then divide this
number by the total number of pixels present in the image to get
a percentage of the pixels contained between the two lines. If the
lines happen to intersect one another (forming two triangular re-
gions) then we count the number of pixels contained within these
two triangles and then divide by the total number of pixels in the
image. Thus, the lower the error, the closer the line generated by
one of the boundary detection methods and line determined by vi-
sual inspection should be to one another.

To illustrate this, the boundary line was determined by visual
inspection for 266 consecutive frames. The boundary line was
also computed using the three line boundary methods. The error
was then computed for every frame for each line boundary meth-
od. Figure 9 shows a plot of the error measurements for each of
the line boundary methods for the 266 consecutive frames. The
large spike in error centered around frame 86 is due to the occlu-
sion of the image by a single blade of glass. This can be seen in
one of the output frames in Figure 7.

5. Sidewalk texture classification system

In this section, we adapt the texture analysis algorithm to per-
form sidewalk identification. This in turn, will be used to allow an
autonomous mobile robot to follow a sidewalk as it moves for-
ward. A system which is designed to operate an autonomous robot
should operate close to real time as possible. Otherwise, the robot
may miss pertinent information necessary to carry out its task.

max 0=

p1 p2< min p1= min p2=
min max> max min=

maxavg 0= min 1=

diff fabs p1 p2–()= diff min≤ min diff=
avg p1 p2+() 2⁄=

avg maxavg> maxavg avg=

Fig. 9: Graph of the calculated error measurements for each
line boundary detection method for consecutive image
frames.

0

5

10

15

20

25

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256

Frame #

%
 E

rr
o

r

Best Fit Step
Max. of Areas

Max/Min

5.1 Criteria for wavelet subband determination

As was the case for our lawn texture classification system, it is
necessary to chose appropriate wavelet subbands for our classifi-
cation purposes. Instead of lawn textures, which consisted of the
cut and uncut lawn surfaces, we will be dealing with textures such
as concrete, asphalt, and some type of ground cover on the periph-
ery of the sidewalk. Thus, we must consider different criteria for
determining which wavelet subbands to use. Listed below are the
following criteria.

1. Because this is a real-time application, we want to limit our
analysis to as few wavelet subbands as possible.

2. We will use the same energy metric as was used in the previ-
ous chapter for computing the amount of energy (indicator of
frequency content) in a wavelet subband. Those bands that
posses high frequency content will be considered for analysis.

3. Finally, we will visually examine each subband by generating
list density plots.

5.2 VQ parameter determination

As stated in the previous chapter, the only parameter we must
specify in the VQ algorithm is the codebook size. Because of the
real-time nature of this application, we will use a codebook size
of 4 for our analysis.

5.3 Robot platform and system

To test our algorithm, we modified an existing robot platform
to make it suitable for this task. The platform in question is a four
wheeled robot in which the two wheels in the back of the robot are
the drive wheels and a linear actuator type steering controller is
used to control the front two wheels. In order to obtain images, a
camcorder was mounted in a wooden frame that allowed the cam-
era to be adjusted in terms of height and camera angle. This frame
was attached to the front of the robot. A picture of the robot is
shown in Figure 10.

To acquire image data from the camcorder, a PCI based video
frame grabber card was used. In addition, we required a consider-
ably fast system to run the texture analysis algorithm. These two
requirements led to the decision to use a desktop PC. Specifically,
we used an Intel P4 - 1.4GHZ computer with 256MB of RAM
running the LINUX Mandrake 8.0 operating system. Because of

this, the PC was placed on a cart that was pushed behind the robot.
This can be seen in Figure 6-1. On top of the PC (as can be seen
in Figure 10) a laptop computer was used to remotely login to the
PC so that the program could be started and stopped and the re-
sults of the texture analysis algorithm could be viewed. To control
the speed and direction of the robot, commands were sent to the
robot via a serial cable connected to the PC. Finally, to provide
power to the system, a small, portable generator was used. A
graphical breakdown of the system is shown in Figure 11.

5.4 Determination of wavelet subbands for side-
walk texture analysis

As in the previous chapter, we present in Figure 12, the list
density plots for each of the 16 wavelet subbands that are gener-
ated in the level 2 DWPF wavelet tree decomposition of a sample
sidewalk image. Below each sub-band is text describing what
type of sub-band it is (LL, LH, HL, HH) and from what type of
subband it is descended from. The number at the end is the value
of the L1, norm energy measure as described in Equation 1. It is
important to note that this energy measurement is computed be-
fore the application of the envelope detection stage.

As can be seen in Figure 12, subband 5, the second level low
passed version of the original image, yields the highest distinction
between the sidewalk and the periphery area. Thus, it will be in-
cluded in our analysis. It should be noted that we did not consider
this particular subband for our lawn texture classification system.
For that application, this band did not yield a great distinction be-
tween the cut and uncut lawn surfaces. Also, the height and angle
of the camera were different in the lawn classification application
making the textures of the lawn surface more pronounced. With
our sidewalk system, the camera is much higher off the ground,
thus limiting the amount of textural information we can view from
the objects in the image.

We will also include subbands 6, 8, and 10 for use in our anal-
ysis primarily based on the energy metric. To summarize, we will
use subbands 5, 6, 8, and 10 for our sidewalk texture classification
system.

5.5 Training data

Shown in Figure 13 below is the training data set used in all
the experiments conducted with this system. The training data

Fig. 10: Picture of the robot platform and support equipment.

Intel P4 -
1.4GHZ PC

running Linux
Mandrake 8.0

w/ PCI
Framegrabber

card

Video
Camera

68HC11
micro-

controller

Steering
Controller

Motor
Controllers

Fig. 11: Graphical representation of the system used for
autonomous sidewalk navigation.

was acquired by capturing a single frame of video after the robot
system was setup. We then cropped two regions of texture to form
the training set.

5.6 Boundary Detection

As was the case for the lawn texture classification system
where we needed to determine the boundary between the cut and
uncut regions of the lawn surface, we need to determine the
boundary between the sidewalk and periphery areas of the side-
walk. In this case, we must find the boundary on the left hand side
and on the right hand side. To accomplish this, we divide the im-
age into two halves vertically and then use the best fit step method
to detect the boundary in each half. Once we have located both
boundaries, we then find where the lines intersect the top of the
image. Knowing this, we calculate the center of the intersection
of the two lines. This will be the center of the sidewalk.

We have so far described an ideal situation in which we are in
the center of the sidewalk and have a left and right boundary.
However, if for some reason the robot veers to far off course, only
one boundary line will be present. In order to deal with this case,
we must constantly check the condition of the two lines. Under
normal circumstances, one line should have a positive slope, the
other negative. If only one line is present in the entire image, the
slope of both lines should be the same polarity, namely either pos-

itive, positive or negative, negative. If this is the case, we then
know we are in a situation where we have veered off course and
are only seeing one boundary line. To get a better estimate of the
line, we compute the best fit step for the entire image.

5.7 Results

Now that we have discussed the robot platform, choice of pa-
rameters, and training data for our texture analysis algorithm, we
now present some results of our system. We conducted 7 runs of
our system. Our test area was an asphalt sidewalk surrounded by
thinly bladed grass. The speed of the robot was set to the lowest
speed possible (about 1 foot per second) and the algorithm pro-
cessed roughly 3 frames per second. The area where the tests oc-
curred was at a slight incline which aided in testing. Going up the
incline had the effect of slowing the robot down to about .5 foot
per second. This enabled the robot to process more frames per
foot as the robot traveled making its tracking more accurate. Cor-
respondingly, when going down the hill, the robot moved at about
twice the speed as it would on a level surface. Because of this, the
robot tended to oscillate from side to side as it traversed down the
sidewalk. It is important to keep in mind that the robot was able
to track the sidewalk as it moved in each of the scenarios. The ro-
bots steering was completely controlled by the algorithm, thus it
was moving autonomously along the sidewalk. Figure 14 and Fig-
ure 15 show some sample results of our system.

5.8 Analysis of Results

As can be seen in Figure 14 and Figure 15, the robot tracks the
sidewalk to a high degree of accuracy. The pictures contained in
Figure 14 were collected from an uphill run of the robot. During
this run, the robot stayed on course very well and oscillation from
side to side was a minimum. This was due to the fact that the robot
was slowed down enough to where it could keep up to the speed
of the algorithm. However, as we can see in the pictures contained
in Figure 15 where the robot travels at a faster rate downhill, the
robot tends to oscillate from side to side.

Fig. 12: Wavelet sub-bands contained in level 2 of the DWPF
for a sidewalk image. The text, XX[A]:YY[B] C, below each
subband can be interpreted as follows: XX represents the
parent node from which this sub-band is generated, YY
represents what type of subband this is, A and B represent
the index number for each subband, and C represents the
L1, norm energy measurement for each subband.

LL[1]:HH[8] 1.14LL[1]:HL[7] 1.38LL[1]:LH[6] 1.51LL[1]:LL[5] 125.20

LH[2]:HH[12] 0.82LH[2]:HL[11] 0.41LH[2]:LH[10] 1.01LH[2]:LL[9] 0.79

HH[4]:LL[17] 0.15 HH[4]:LH[18] 0.21 HH[4]:HL[19] 0.32 HH[4]:HH[20] 0.58

HL[3]:LL[13] 0.37 HL[3]:LH[14] 0.28 HL[3]:HL[15] 1.00 HL[3]:HH[16] 0.80

Fig. 13: Training data set for the sidewalk texture analysis
system. Figures (a) and (b) show the training data set for the
sidewalk texture and figures (c) and (d) show the training
data set for the periphery texture.

(a) (b)

(d)(c)

6. Conclusions

Our main conclusion, as is the premise of this paper, is that ro-
bots can indeed navigate outdoor environments through the judi-
cious use of computer vision. Specifically, we acquired images
and used our texture analysis algorithm to identify specific at-
tributes in these images. This was demonstrated by our lawn tex-
ture analysis system where we were able to successfully
determine the difference between the cut and uncut lawn surfaces.
In this way, we could determine the boundary between these two
surfaces and use this to allow an autonomous lawn mower to mow
in a pattern. We further demonstrated our claim by adapting our
algorithm for the alternate application of sidewalk tracking. In
this case, however, we implemented this on a mobile robot plat-
form. That robot was successfully able to track a sidewalk as it
moved along it. Several successful runs were performed on this
system.

The texture analysis algorithm developed is a highly flexible
one with few parameters to specify. As demonstrated by our side-
walk tracking application, this system can easily be adapted to
other tasks as well. All that is required is the choice of the appro-
priate wavelet subbands and the choice of the codebook size for
the vector quantization algorithm.

From our experiments, we can draw several conclusions. First
of all, the use of texture analysis for image segmentation allows
for greater flexibility of the environmental conditions in an out-

door environment. One of the greatest concerns for computer vi-
sion in an outdoor environment is the changing lighting
conditions due to clouds, going under trees, etc.. Because we are
identifying objects based on the physical property of texture, this
system is more robust to changes in lighting conditions as
wouldn’t necessarily be the case if we were identifying the objects
based on their color. In addition, for our lawn application, color
would not be an applicable discriminant to use because we are try-
ing to differentiate the same lawn surface (i.e. grass) in two dif-
ferent forms (cut and uncut).We can also judge the flexibility of
our system based on the training of the system. For all our lawn
and sidewalk experiments, we trained the system only once. The
system showed remarkable flexibility in being able to successful-
ly segment the textures in the images for long experimental runs.
For the sidewalk tracking experiments, all 7 runs were performed
using the same training data set. Secondly, we have demonstrated
that the wavelet transform provides a valuable tool for extracting
textural features from images. While much research has gone into
the use of wavelet transforms for textural analysis, no one has ap-
plied this research to the area of robotics. The use of the wavelet
transform was mainly confined to the task of analyzing samples
of textures or samples of micro-textures in a laboratory environ-
ment. This is the first application where texture analysis has been
applied to a real agent.

Fig. 14: Output results for our sidewalk texture classification
system. The images on the left hand side represent the
classified and clustered result of the images presented on the
right hand side. These images are taken going up the hill.

Fig. 15: Output results for our sidewalk texture classification
system. The images on the left hand side represent the
classified and clustered result of the images presented on the
right hand side. These images are taken going down the hill.

7. References

[1] K. W. Abyoto, S. J. Wirdjosoedirdjo, and T. Watanabe,“Un-
supervised Texture Segmentation Using Multiresolution
Analysis for Feature Extraction,”

, Vol. 2, No. 1, pp 49-61,
1998.

[2] D. Dunn and W. E. Higgins, “Optimal Gabor Filters for Tex-
ture Segmentation,”

IEEE Transactions on Image Process-
ing

, Vol. 4, No. 7, pp. 947-964, Jul. 1995.
[3] F. Espinal, T. Huntsberger, B. Jawerth, and T. Kubota,

“Wavelet-Based Fractal Signature Analysis for Automatic
Target Recognition,”

Optical Engineering, Special Section
on Advances in Patten Recognition

, Vol. 37, No. 1, pp. 166-
174, 1998.

[4] A. Graps, “An Introduction to Wavelets,”

IEEE Computa-
tional Science and Engineering, Vol. 2, No. 2, pp. 1-18,
1995.

[5] A. K. Jain and F. Farrokhnia, “Unsupervised Texture Seg-
mentation Using Gabor Filters,” Pattern Recognition, Vol.
24, No. 12, pp. 1167-1186, 1991.

[6] A. Laine and J. Fan, “An Adaptive Approach for Texture
Segmentation by Multi-channel Wavelet Frames,” Center
for Computer Vision and Visualization, Technical Report
No. TR-93-025, Computer and Information Sciences De-
partment, University of Florida, Aug. 1993.

[7] A. Laine and J. Fan, “Frame Representations for Texture
Segmentation,” IEEE Transcations on Image Processing,
Vol. 5, No. 5, pp. 771-779, May 1996.

[8] A. Laine and J. Fan, “Texture Classification by Wavelet
Packet Signatures,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 15, No. 11, pp. 1185-1191,
Nov. 1993.

[9] C-T Li and R. Wilson, “Textured Image Segmentation Using
Multiresolution Markov Random Fields,” IEE Colloquium
on Applied Statistical Pattern Recognition, pp. 8/1-8/6,
1999.

[10] D. P. Mital, “Texture Segmentation Using Gabor Filters,”
IEEE Fourth International Conference on Knowledge-
Based Intelligent Engineering Systems & Allied Technolo-
gies, pp. 109-112, Aug. 30 - Sept. 1, 2000.

[11] M. Ollis, “Perception Algorithms for a Harvesting Robot,”
PhD Dissertation, The Robotics Institute, Carnegie Mellon
University, Aug. 1997.

[12] W. Pieczynski and A-N Tebbache, “Pairwise Markov Ran-
dom Field and its Application in Textured Images Segmen-
tation,” Proceedings of the 4th IEEE Southwest Symposium
on Image Analysis and Interpretation, pp. 106-110, Austin,
Texas, 2000.

[13] G. Poggi and A. R. P. Ragozini, “Image Segmentation by
Tree-Structured Markov Random Fields,” IEEE Signal Pro-
cessing Letters, Vol. 6, No. 7, pp. 155-157, July 1999.

[14] T. Randen and J. H. Husoy, “Filtering for Texture Classifi-
cation: A Comparative Study,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 21, No. 4, pp.
291-310, Apr. 1999.

[15] G. Ravichandran and M. M. Trivedi, “Circular-Mellin Fea-
tures for Texture Segmentation,” IEEE Transactions on Im-

age Processing, Vol. 4, No. 12, pp. 1629-1640, Dec. 1995.
[16] A. Sarkar, M. K. Biswas, and K. M. S. Sharma, “A Simple

Unsupervised MRF Model Based Image Segmentation Ap-
proach,” IEEE Transactions on Image Processing, Vol. 9,
No. 5, pp. 801-812, May 2000.

[17] M. Unser, “Texture Classification and Segmentation Using
Wavelet Frames,” IEEE Transactions on Image Processing,
Vol. 4, No. 11, pp. 1549-1560, Nov. 1995.

[18] M. Unser, “Texture Discrimination Using Wavelets,” IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pp. 640-641, 1993.

[19] M. Vetterli, “Wavelets and Filter Banks: Theory and De-
sign,” IEEE Transactions on Signal Processing,” Vol. 40,
No. 9, pp. 2207-2232, Sep. 1992.

[20] S. C. Zhu, “Region Competition: Unifying Snakes, Region
Growing, and Bayes/MDL for Multi-band Segmentation,”
Harvard Robotics Laboratory, Technical Report No. 94-10,
pp. 1-50.

